固态电池锂枝晶解决的理论方法
全固态电池研究过程中遇到的第一个难题就是锂枝晶问题,锂枝晶的形成对于所有的锂电池而言,都是不得不面对的问题。其生成原理是锂离子在负极与电解液中的不均匀沉积,所形成的树杈状的锂离子结晶体,这些结晶体在放电倍率超过电池设计上限以及长期的充放电循环中均有可能出现。而锂枝晶一旦出现,则意味着电池内部的锂离子出现了不可逆的减少,同时锂枝晶会不断吸附游离的锂离子实现生长,最终可能会刺破隔膜,导致电池正负极直接产生接触引发短路。
面对这一难题,有厂家提出了解决的理论方法:
1、银碳复合材料层
在硫化物固态电解质与负极材料之间,添加了一层银碳复合材料层。
其充电过程中的工作原理,是在锂离子通过电解质抵达负极最终沉积的过程中,使锂离子与银碳材料层中间的银离子实现结合,降低锂离子的成核能(可简单理解为聚集在一起的能力),从而使锂离子均匀地沉积在负极材料上。
2、SUS集电器负极
银碳复合材料层很大程度上解决了锂离子不均匀沉积的问题,但为了尽可能减少锂枝晶的形成,还需要对电池中过量的锂进行削减。
是因为被盛传适合作为高能量密度(3,860mAhg1)负极材料的金属锂,在固态电池中并不适用。过量的锂在高电压的作用下很可能会自发聚集,形成锂枝晶。
因此,在全固态电池解决方案中使用不含锂的不锈钢(SUS)集电器作为负极,作为锂离子的沉积载体和电池的结构体,SUS材料的机械强度十分可靠。并且由于负极材料不含锂,也能够抑制锂枝晶的形成。
3、辉石型硫化物固态电解质
锂枝晶形成的另一处位置是电解质,由于传统电解质锂离子迁移数通常为0.5,过量放电造成的大量锂离子迁移会使锂离子沉积在离子通道内,在长期的循环中有可能形成锂枝晶。
在全固态电池解决方案中使用锂离子迁移数为1的辉石型硫化物固态电解质,其锂离子迁移数较一般电解质更大,不容易使锂离子沉积其中,因此也能够抑制锂枝晶的形成。
据相关媒体报道,通过上述的固态电池锂枝晶解决理论方法,有效避免了锂枝晶的形成,在其数千次的循环试验中,采用这一方案的固态电池没有形成锂枝晶。
上一篇: 解决固态电池阻抗问题的理论方法